Package pygeodesy :: Module lcc
[frames] | no frames]

Module lcc

Lambert Conformal Conic (LCC) projection.

Lambert conformal conic projection for 1- or 2-Standard Parallels classes Conic, Conics registry, LCCError and position class Lcc.

See LCC, Lambert Conformal Conic to Geographic Transformation Formulae, Lambert Conformal Conic Projection and John P. Snyder 'Map Projections - A Working Manual', 1987, pp 107-109.


Version: 24.06.24

Classes
  Conic
Lambert conformal conic projection (1- or 2-SP).
  LCCError
Lambert Conformal Conic LCC or other Lcc issue.
  Lcc
Lambert conformal conic East-/Northing location.
Functions
 
toLcc(latlon, conic=Conic(name='WRF_Lb', lat0=40, lon0=-97, par1=33, par2=45, E0=0..., height=None, Lcc=<class 'pygeodesy.lcc.Lcc'>, **name_Lcc_kwds)
Convert an (ellipsoidal) geodetic point to a Lambert location.
Variables
  __all__ = _ALL_LAZY.lcc
  Conics = Conics.WRF_Lb: Conic(name='WRF_Lb', lat0=40, lon0=-97...
Some pre-defined Conics, all lazily instantiated.
  Conics.Be08Lb
Conic(name='Be08Lb', lat0=50.797815, lon0=4.35921583, par1=49.8333339, par2=51.1666672, E0=649328, N0=665262, k0=1, SP=2, datum=Datum(name='GRS80', ellipsoid=Ellipsoids.GRS80, transform=Transforms.WGS84),
  Conics.Be72Lb
Conic(name='Be72Lb', lat0=90, lon0=4.3674867, par1=49.8333339, par2=51.1666672, E0=150000.013, N0=5400088.438, k0=1, SP=2, datum=Datum(name='NAD83', ellipsoid=Ellipsoids.GRS80, transform=Transforms.NAD83),
  Conics.Fr93Lb
Conic(name='Fr93Lb', lat0=46.5, lon0=3, par1=49, par2=44, E0=700000, N0=6600000, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
  Conics.MaNLb
Conic(name='MaNLb', lat0=33.3, lon0=-5.4, par1=31.73, par2=34.87, E0=500000, N0=300000, k0=1, SP=2, datum=Datum(name='NTF', ellipsoid=Ellipsoids.Clarke1880IGN, transform=Transforms.NTF),
  Conics.MxLb
Conic(name='MxLb', lat0=12, lon0=-102, par1=17.5, par2=29.5, E0=2500000, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
  Conics.PyT_Lb
Conic(name='PyT_Lb', lat0=46.8, lon0=2.33722917, par1=45.8989389, par2=47.6960144, E0=600000, N0=200000, k0=1, SP=2, datum=Datum(name='NTF', ellipsoid=Ellipsoids.Clarke1880IGN, transform=Transforms.NTF),
  Conics.USA_Lb
Conic(name='USA_Lb', lat0=23, lon0=-96, par1=33, par2=45, E0=0, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
  Conics.WRF_Lb
Conic(name='WRF_Lb', lat0=40, lon0=-97, par1=33, par2=45, E0=0, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84)
Function Details

toLcc (latlon, conic=Conic(name='WRF_Lb', lat0=40, lon0=-97, par1=33, par2=45, E0=0..., height=None, Lcc=<class 'pygeodesy.lcc.Lcc'>, **name_Lcc_kwds)

 

Convert an (ellipsoidal) geodetic point to a Lambert location.

Arguments:
  • latlon - Ellipsoidal point (LatLon).
  • conic - Optional Lambert projection to use (Conic).
  • height - Optional height for the point, overriding the default height (meter).
  • Lcc - Class to return the Lambert location (Lcc).
  • name_Lcc_kwds - Optional name=NN (str) and optional, additional Lcc keyword arguments, ignored if Lcc is None.
Returns:
The Lambert location (Lcc) or if Lcc is None, an EasNor3Tuple(easting, northing, height).
Raises:
  • TypeError - If latlon is not ellipsoidal.

Variables Details

Conics

Some pre-defined Conics, all lazily instantiated.

Value:
Conics.WRF_Lb: Conic(name='WRF_Lb', lat0=40, lon0=-97, par1=33, par2=4\
5, E0=0, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipso\
ids.WGS84, transform=Transforms.WGS84))