intersections2 (center1,
radius1,
center2,
radius2,
height=None,
wrap=False,
equidistant=None,
tol=0.001,
LatLon=<class 'pygeodesy.ellipsoidalGeodSolve.LatLon'>,
**LatLon_kwds)
|
|
Iteratively compute the intersection points of two circles,
each defined by an (ellipsoidal) center point and a radius.
- Arguments:
center1 - Center of the first circle (LatLon).
radius1 - Radius of the first circle (meter , conventionally).
center2 - Center of the second circle (LatLon).
radius2 - Radius of the second circle (meter , same units as
radius1 ).
height - Optional height for the intersection points (meter ,
conventionally) or None for the "radical
height" at the radical line between both centers.
wrap - If True , wrap or normalize and unroll
center2 (bool ).
equidistant - An azimuthal equidistant projection (class or function pygeodesy.equidistant) or None for
the preferred center1.Equidistant .
tol - Convergence tolerance (meter , same units as
radius1 and radius2 ).
LatLon - Optional class to return the intersection points (LatLon) or None .
LatLon_kwds - Optional, additional LatLon keyword
arguments, ignored if LatLon is None .
- Returns:
- 2-Tuple of the intersection points, each a
LatLon instance or LatLon4Tuple(lat, lon, height,
datum) if LatLon is None . For
abutting circles, both points are the same instance, aka the
radical center.
- Raises:
IntersectionError - Concentric, antipodal, invalid or non-intersecting circles or no
convergence for the tol .
TypeError - Invalid or non-ellipsoidal center1 or
center2 or invalid
equidistant .
UnitError - Invalid radius1 , radius2 or
height .
|