Package pygeodesy :: Module triaxials
[frames] | no frames]

Module triaxials

Triaxal ellipsoid classes ordered Triaxial and unordered Triaxial_ and Jacobi conformal projections JacobiConformal and JacobiConformalSpherical, transcoded from Charles Karney's C++ class JacobiConformal to pure Python and miscellaneous classes BetaOmega2Tuple, BetaOmega3Tuple, Jacobi2Tuple and TriaxialError.

Copyright (C) Charles Karney (2008-2023). For more information, see the GeographicLib documentation.


See Also: Geodesics on a triaxial ellipsoid and Triaxial coordinate systems and their geometrical interpretation.

Version: 24.10.15

Classes
  BetaOmega2Tuple
2-Tuple (beta, omega) with ellipsoidal lat- and longitude beta and omega both in Radians (or Degrees).
  BetaOmega3Tuple
3-Tuple (beta, omega, height) with ellipsoidal lat- and longitude beta and omega both in Radians (or Degrees) and the height, rather the (signed) distance to the triaxial's surface (measured along the radial line to the triaxial's center) in meter, conventionally.
  Jacobi2Tuple
2-Tuple (x, y) with a Jacobi Conformal x and y projection, both in Radians (or Degrees).
  Triaxial_
Unordered triaxial ellipsoid and base class.
  Triaxial
Ordered triaxial ellipsoid.
  JacobiConformal
This is a conformal projection of a triaxial ellipsoid to a plane in which the X and Y grid lines are straight.
  JacobiConformalSpherical
An alternate, spherical JacobiConformal projection.
  TriaxialError
Raised for Triaxial issues.
Functions
 
hartzell4(pov, los=False, tri_biax=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., **name)
Compute the intersection of a tri-/biaxial ellipsoid and a Line-Of-Sight from a Point-Of-View outside.
Variables
  __all__ = _ALL_LAZY.triaxials
  Triaxials =
Some pre-defined Triaxials, all lazily instantiated.
  Triaxials.Amalthea
Triaxial(name='Amalthea', a=125000, b=73000, c=64000, e2ab=0.658944, e2bc=0.231375493, e2ac=0.737856, volume=2446253479595252, area=93239507787.490371704, area_p=93212299402.670425415)
  Triaxials.Ariel
Triaxial(name='Ariel', a=581100, b=577900, c=577700, e2ab=0.01098327, e2bc=0.000692042, e2ac=0.011667711, volume=812633172614203904, area=4211301462766.580078125, area_p=4211301574065.829589844)
  Triaxials.Earth
Triaxial(name='Earth', a=6378173.435, b=6378103.9, c=6356754.399999999, e2ab=0.000021804, e2bc=0.006683418, e2ac=0.006705077, volume=1083208241574987694080, area=510065911057441.0625, area_p=510065915922713.6875)
  Triaxials.Enceladus
Triaxial(name='Enceladus', a=256600, b=251400, c=248300, e2ab=0.040119337, e2bc=0.024509841, e2ac=0.06364586, volume=67094551514082248, area=798618496278.596679688, area_p=798619018175.109863281)
  Triaxials.Europa
Triaxial(name='Europa', a=1564130, b=1561230, c=1560930, e2ab=0.003704694, e2bc=0.000384275, e2ac=0.004087546, volume=15966575194402123776, area=30663773697323.51953125, area_p=30663773794562.45703125)
  Triaxials.Io
Triaxial(name='Io', a=1829400, b=1819300, c=1815700, e2ab=0.011011391, e2bc=0.003953651, e2ac=0.014921506, volume=25313121117889765376, area=41691875849096.7421875, area_p=41691877397441.2109375)
  Triaxials.Mars
Triaxial(name='Mars', a=3394600, b=3393300, c=3376300, e2ab=0.000765776, e2bc=0.009994646, e2ac=0.010752768, volume=162907283585817247744, area=144249140795107.4375, area_p=144249144150662.15625)
  Triaxials.Mimas
Triaxial(name='Mimas', a=207400, b=196800, c=190600, e2ab=0.09960581, e2bc=0.062015624, e2ac=0.155444317, volume=32587072869017956, area=493855762247.691894531, area_p=493857714107.9375)
  Triaxials.Miranda
Triaxial(name='Miranda', a=240400, b=234200, c=232900, e2ab=0.050915557, e2bc=0.011070811, e2ac=0.061422691, volume=54926187094835456, area=698880863325.756958008, area_p=698881306767.950317383)
  Triaxials.Moon
Triaxial(name='Moon', a=1735550, b=1735324, c=1734898, e2ab=0.000260419, e2bc=0.000490914, e2ac=0.000751206, volume=21886698675223740416, area=37838824729886.09375, area_p=37838824733332.2265625)
  Triaxials.Tethys
Triaxial(name='Tethys', a=535600, b=528200, c=525800, e2ab=0.027441672, e2bc=0.009066821, e2ac=0.036259685, volume=623086233855821440, area=3528073490771.394042969, area_p=3528074261832.738769531)
  Triaxials.WGS84_35
Triaxial(name='WGS84_35', a=6378172, b=6378102, c=6356752.314245179, e2ab=0.00002195, e2bc=0.006683478, e2ac=0.006705281, volume=1083207319768789942272, area=510065621722018.125, area_p=510065626587483.3125)
Function Details

hartzell4 (pov, los=False, tri_biax=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Tran..., **name)

 

Compute the intersection of a tri-/biaxial ellipsoid and a Line-Of-Sight from a Point-Of-View outside.

Arguments:
Returns:
Vector4Tuple(x, y, z, h) on the tri-/biaxial's surface, with h the distance from pov to (x, y, z) along the los, all in meter, conventionally.
Raises:
  • TriaxialError - Invalid pov or pov inside the tri-/biaxial or invalid los or los points outside or away from the tri-/biaxial.
  • TypeError - Invalid tri_biax, ellipsoid or datum.