Package pygeodesy :: Package triaxials :: Module triaxial5 :: Class Conformal
[frames] | no frames]

Class Conformal

      object --+                        
               |                        
    named._Named --+                    
                   |                    
    named._NamedBase --+                
                       |                
    named._NamedEnumItem --+            
                           |            
bases._UnOrderedTriaxialBase --+        
                               |        
      bases._OrderedTriaxialBase --+    
                                   |    
                            Triaxial --+
                                       |
                                      Conformal
Known Subclasses:

This is a Jacobi Conformal projection of a triaxial ellipsoid to a plane where the X and Y grid lines are straight.

Ellipsoidal coordinates beta and omega are converted to Jacobi Conformal y respectively x separately. Jacobi's coordinates have been multiplied by sqrt(a**2 - c**2) / (2 * b) so that the customary results are returned in the case of an ellipsoid of revolution.

Copyright (C) Charles Karney (2014-2024) and licensed under the MIT/X11 License.


Note: This constructor can not be used to specify a sphere, see alternate ConformalSphere.

See Also: Triaxial, C++ class JacobiConformal, Jacobi's conformal projection and Jacobi, C. G. J. Vorlesungen über Dynamik, page 212ff.

Instance Methods
 
__init__(self, a_triaxial, b=None, c=None, **name)
New ordered Triaxial, Triaxial3, Conformal or Conformal3.
 
x(self, omega, unit=<class 'pygeodesy.units.Radians'>)
Compute a Jacobi Conformal x projection.
 
xR(self, omega, unit=<class 'pygeodesy.units.Radians'>)
Compute a Jacobi Conformal x projection.
 
xR_(self, somega, comega)
Compute a Jacobi Conformal x projection.
 
xy(self, beta, omega, **unit_name)
Compute a Jacobi Conformal x and y projection.
 
xyR2(self, beta, omega, **unit_name)
Compute a Jacobi Conformal x and y projection.
 
xyR2_(self, sbeta, cbeta, somega, comega, **name)
Compute a Jacobi Conformal x and y projection.
 
y(self, beta, unit=<class 'pygeodesy.units.Radians'>)
Compute a Jacobi Conformal y projection.
 
yR(self, beta, unit=<class 'pygeodesy.units.Radians'>)
Compute a Jacobi Conformal y projection.
 
yR_(self, sbeta, cbeta)
Compute a Jacobi Conformal y projection.

Inherited from Triaxial: forwardBetaOmega, forwardBetaOmega_, forwardCartesian, forwardLatLon, forwardLatLon_, reverseBetaOmega, reverseCartesian, reverseLatLon

Inherited from bases._UnOrderedTriaxialBase: __str__, area_p, hartzell4, height4, normal3d, normal4, sideOf, toBiaxial, toEllipsoid, toStr

Inherited from named._NamedEnumItem: unregister

Inherited from named._NamedBase: __repr__, others, toRepr

Inherited from named._Named: __format__, __imatmul__, __matmul__, __rmatmul__, attrs, classof, copy, dup, methodname, rename, renamed, toStr2

Inherited from object: __delattr__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

Properties
  xyQ2
Get the Jacobi Conformal quadrant size in meter (Vector2Tuple(x, y)).
  xyQR2
Get the Jacobi Conformal quadrant size in Radians (Conformal2Tuple(x, y)).

Inherited from bases._OrderedTriaxialBase: area

Inherited from bases._UnOrderedTriaxialBase: a, a2, b, b2, c, c2, e2ab, e2ac, e2bc, isOrdered, isSpherical, unOrdered, volume

Inherited from named._NamedEnumItem: name

Inherited from named._Named: classname, classnaming, iteration, named, named2, named3, named4, sizeof, typename

Inherited from object: __class__

Method Details

__init__ (self, a_triaxial, b=None, c=None, **name)
(Constructor)

 

New ordered Triaxial, Triaxial3, Conformal or Conformal3.

Arguments:
  • a_triaxial - Largest semi-axis (scalar, conventionally in meter) or an other Triaxial or Triaxial_ instance.
  • b - Middle semi-axis (meter, same units as a), required if a_triaxial is scalar, ignored otherwise.
  • c - Smallest semi-axis (meter, like b).
  • name - Optional name=NN (str).
Raises:
Overrides: object.__init__

Note: The semi-axes must be ordered as a >= b >= c > 0 and must be ellipsoidal, a > c.

x (self, omega, unit=<class 'pygeodesy.units.Radians'>)

 

Compute a Jacobi Conformal x projection.

Arguments:
  • omega - Ellipsoidal longitude (Ang or unit).
  • unit - Unit of scalar omega (or Degrees).
Returns:
The x projection (Meter), same units as this triaxial's semi-axes.

xR (self, omega, unit=<class 'pygeodesy.units.Radians'>)

 

Compute a Jacobi Conformal x projection.

Arguments:
  • omega - Ellipsoidal longitude (Ang or unit).
  • unit - Unit of scalar omega (or Degrees).
Returns:
The x projection (Radians).

xR_ (self, somega, comega)

 

Compute a Jacobi Conformal x projection.

Arguments:
  • somega - Ellipsoidal longitude sin(omega) (scalar).
  • comega - Ellipsoidal longitude cos(omega) (scalar).
Returns:
The x projection (Radians).

xy (self, beta, omega, **unit_name)

 

Compute a Jacobi Conformal x and y projection.

Arguments:
  • beta - Ellipsoidal latitude (Ang or unit).
  • omega - Ellipsoidal longitude (Ang or unit).
  • unit_name - Optional scalar unit=Radians and name (str), overriding name="xyR2".
Returns:
A (Vector2Tuple(x, y)), both in Meter, same units as this triaxial's semi-axes..

xyR2 (self, beta, omega, **unit_name)

 

Compute a Jacobi Conformal x and y projection.

Arguments:
  • beta - Ellipsoidal latitude (Ang or unit).
  • omega - Ellipsoidal longitude (Ang or unit).
  • unit_name - Optional scalar unit=Radians and name (str), overriding name="xyR2".
Returns:
A Conformal2Tuple(x, y), both in Radians.

xyR2_ (self, sbeta, cbeta, somega, comega, **name)

 

Compute a Jacobi Conformal x and y projection.

Arguments:
  • sbeta - Ellipsoidal latitude sin(beta) (scalar).
  • cbeta - Ellipsoidal latitude cos(beta) (scalar).
  • somega - Ellipsoidal longitude sin(omega) (scalar).
  • comega - Ellipsoidal longitude cos(omega) (scalar).
  • name - Optional name (str), overriding name="xyR2_".
Returns:
A Conformal2Tuple(x, y).

y (self, beta, unit=<class 'pygeodesy.units.Radians'>)

 

Compute a Jacobi Conformal y projection.

Arguments:
  • beta - Ellipsoidal latitude (Ang or unit).
  • unit - Unit of scalar beta (or Degrees).
Returns:
The y projection (Meter), same units as this triaxial's semi-axes.

yR (self, beta, unit=<class 'pygeodesy.units.Radians'>)

 

Compute a Jacobi Conformal y projection.

Arguments:
  • beta - Ellipsoidal latitude (Ang or unit).
  • unit - Unit of scalar beta (or Degrees).
Returns:
The y projection (Radians).

yR_ (self, sbeta, cbeta)

 

Compute a Jacobi Conformal y projection.

Arguments:
  • sbeta - Ellipsoidal latitude sin(beta) (scalar).
  • cbeta - Ellipsoidal latitude cos(beta) (scalar).
Returns:
The y projection (Radians).

Property Details

xyQ2

Get the Jacobi Conformal quadrant size in meter (Vector2Tuple(x, y)).

Get method:
xyQ2(self) - Get the Jacobi Conformal quadrant size in meter (Vector2Tuple(x, y)).
Set method:
_fset_error(inst, val) - Throws an AttributeError, always.
Delete Method:
_fdel(inst) - Zap the cached/memoized property value.

xyQR2

Get the Jacobi Conformal quadrant size in Radians (Conformal2Tuple(x, y)).

Get method:
xyQR2(self) - Get the Jacobi Conformal quadrant size in Radians (Conformal2Tuple(x, y)).
Set method:
_fset_error(inst, val) - Throws an AttributeError, always.
Delete Method:
_fdel(inst) - Zap the cached/memoized property value.