| Home | Trees | Indices | Help |
|
|---|
|
|
Triaxal ellipsoid classes Triaxial and unordered Triaxial_ and Jacobi conformal projections Conformal and ConformalSphere, transcoded from Karney's GeographicLib 2.5.2 C++ class JacobiConformal to pure Python and miscellaneous classes BetaOmega2Tuple, BetaOmega3Tuple and Conformal2Tuple, all kept for backward copability.
Copyright (C) Charles Karney (2008-2024) and licensed under the MIT/X11 License. For more information, see the GeographicLib 2.5.2 experimental documentation.
See Also: Geodesics on a triaxial ellipsoid and Triaxial coordinate systems and their geometrical interpretation.
Version: 25.11.29
| Classes | |
|
BetaOmega2Tuple 2-Tuple (beta, omega) with ellipsoidal lat- and
longitude beta and omega both in Radians
(or Degrees).
|
|
|
BetaOmega3Tuple 3-Tuple (beta, omega, height) with ellipsoidal
lat- and longitude beta and omega both in
Radians (or Degrees)
and the height, rather the (signed) distance to
the triaxial's surface (measured along the radial line to the
triaxial's center) in meter, conventionally.
|
|
|
Conformal2Tuple 2-Tuple (x, y) with a Jacobi Conformal
x and y projection, both in Radians
(or Degrees).
|
|
|
Triaxial_ Unordered triaxial ellipsoid. |
|
|
Triaxial Ordered triaxial ellipsoid. |
|
|
Conformal This is a Jacobi Conformal projection of a triaxial ellipsoid to a plane where the X and Y
grid lines are straight.
|
|
|
ConformalSphere Alternate, Jacobi Conformal projection on a spherical triaxial. |
|
| Functions | |||
|
|||
|
|||
| Variables | |
__all__ = _ALL_LAZY.triaxials_triaxial5
|
|
Triaxials = Triaxials(Triaxial, Triaxial_)Some pre-defined Triaxials, all lazily instantiated. |
|
T = Triaxial_(6378388.0, 6378318.0, 6356911.9461)
|
|
t = [NN]+ Triaxials.toRepr(all= True, asorted= True).split(_NL_)
|
|
|
Triaxials.Amalthea Triaxial(name='Amalthea', a=125000, b=73000, c=64000, e2ab=0.658944, e2bc=0.231375493, e2ac=0.737856, volume=2446253479595252, area=93239507787.490371704, area_p=93212299402.670425415) |
|
|
Triaxials.Ariel Triaxial(name='Ariel', a=581100, b=577900, c=577700, e2ab=0.01098327, e2bc=0.000692042, e2ac=0.011667711, volume=812633172614203904, area=4211301462766.580078125, area_p=4211301574065.829589844) |
|
|
Triaxials.Earth Triaxial(name='Earth', a=6378173.435, b=6378103.9, c=6356754.399999999, e2ab=0.000021804, e2bc=0.006683418, e2ac=0.006705077, volume=1083208241574987694080, area=510065911057441.0625, area_p=510065915922713.6875) |
|
|
Triaxials.Enceladus Triaxial(name='Enceladus', a=256600, b=251400, c=248300, e2ab=0.040119337, e2bc=0.024509841, e2ac=0.06364586, volume=67094551514082248, area=798618496278.596679688, area_p=798619018175.109985352) |
|
|
Triaxials.Europa Triaxial(name='Europa', a=1564130, b=1561230, c=1560930, e2ab=0.003704694, e2bc=0.000384275, e2ac=0.004087546, volume=15966575194402123776, area=30663773697323.51953125, area_p=30663773794562.45703125) |
|
|
Triaxials.Io Triaxial(name='Io', a=1829400, b=1819300, c=1815700, e2ab=0.011011391, e2bc=0.003953651, e2ac=0.014921506, volume=25313121117889765376, area=41691875849096.7421875, area_p=41691877397441.2109375) |
|
|
Triaxials.Mars Triaxial(name='Mars', a=3394600, b=3393300, c=3376300, e2ab=0.000765776, e2bc=0.009994646, e2ac=0.010752768, volume=162907283585817247744, area=144249140795107.4375, area_p=144249144150662.15625) |
|
|
Triaxials.Mimas Triaxial(name='Mimas', a=207400, b=196800, c=190600, e2ab=0.09960581, e2bc=0.062015624, e2ac=0.155444317, volume=32587072869017956, area=493855762247.691833496, area_p=493857714107.9375) |
|
|
Triaxials.Miranda Triaxial(name='Miranda', a=240400, b=234200, c=232900, e2ab=0.050915557, e2bc=0.011070811, e2ac=0.061422691, volume=54926187094835456, area=698880863325.757080078, area_p=698881306767.950317383) |
|
|
Triaxials.Moon Triaxial(name='Moon', a=1735550, b=1735324, c=1734898, e2ab=0.000260419, e2bc=0.000490914, e2ac=0.000751206, volume=21886698675223740416, area=37838824729886.09375, area_p=37838824733332.21875) |
|
|
Triaxials.Tethys Triaxial(name='Tethys', a=535600, b=528200, c=525800, e2ab=0.027441672, e2bc=0.009066821, e2ac=0.036259685, volume=623086233855821440, area=3528073490771.394042969, area_p=3528074261832.738769531) |
|
|
Triaxials.WGS84_3 Triaxial(name='WGS84_3', a=6378171.36, b=6378101.609999999, c=6356751.84, e2ab=0.000021871, e2bc=0.006683505, e2ac=0.00670523, volume=1083207064030173855744, area=510065541435967.4375, area_p=510065546301413.5625) |
|
|
Triaxials.WGS84_35 Triaxial(name='WGS84_35', a=6378172, b=6378102, c=6356752.314245179, e2ab=0.00002195, e2bc=0.006683478, e2ac=0.006705281, volume=1083207319768789942272, area=510065621722018.125, area_p=510065626587483.3125) |
|
|
Triaxials.WGS84_3r Triaxial(name='WGS84_3r', a=6378172, b=6378102, c=6356752, e2ab=0.00002195, e2bc=0.006683577, e2ac=0.00670538, volume=1083207266220584468480, area=510065604942135.8125, area_p=510065609807745.0) |
|
| Function Details |
Compute the intersection of a tri-/biaxial ellipsoid and a Line-Of-Sight from a Point-Of-View outside.
See Also: Class pygeodesy3.Los, functions pygeodesy.tyr3d and pygeodesy.hartzell and lookAtSpheroid and "Satellite Line-of-Sight Intersection with Earth". |
Compute the projection on and the height above or below a tri-/biaxial ellipsoid's surface.
See Also: Methods Triaxial.normal3d and Ellipsoid.height4, Eberly's Distance from a Point to ... and Bektas' Shortest Distance from a Point to Triaxial Ellipsoid. |
| Home | Trees | Indices | Help |
|
|---|
| Generated by Epydoc 3.0.1 on Fri Dec 12 18:16:05 2025 | http://epydoc.sourceforge.net |